3.8.67 \(\int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {\cot (c+d x)}} \, dx\) [767]

3.8.67.1 Optimal result
3.8.67.2 Mathematica [B] (verified)
3.8.67.3 Rubi [A] (verified)
3.8.67.4 Maple [B] (verified)
3.8.67.5 Fricas [B] (verification not implemented)
3.8.67.6 Sympy [F(-1)]
3.8.67.7 Maxima [F]
3.8.67.8 Giac [F]
3.8.67.9 Mupad [F(-1)]

3.8.67.1 Optimal result

Integrand size = 28, antiderivative size = 222 \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {\cot (c+d x)}} \, dx=-\frac {23 (-1)^{3/4} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{4 d}-\frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {a^2 \sqrt {a+i a \tan (c+d x)}}{2 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {9 i a^2 \sqrt {a+i a \tan (c+d x)}}{4 d \sqrt {\cot (c+d x)}} \]

output
-23/4*(-1)^(3/4)*a^(5/2)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a 
*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d-(4+4*I)*a^(5/2)*ar 
ctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^ 
(1/2)*tan(d*x+c)^(1/2)/d-1/2*a^2*(a+I*a*tan(d*x+c))^(1/2)/d/cot(d*x+c)^(3/ 
2)+9/4*I*a^2*(a+I*a*tan(d*x+c))^(1/2)/d/cot(d*x+c)^(1/2)
 
3.8.67.2 Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(462\) vs. \(2(222)=444\).

Time = 6.41 (sec) , antiderivative size = 462, normalized size of antiderivative = 2.08 \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {\cot (c+d x)}} \, dx=\frac {i a^2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (2 (1+i \tan (c+d x))^2 \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \left (\frac {1}{4} \left (\frac {3}{2 (1+i \tan (c+d x))^2}+\frac {1}{1+i \tan (c+d x)}\right )+\frac {3 \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right )}{8 (1+i \tan (c+d x))^{5/2} \sqrt {i a \tan (c+d x)}}\right )-i \left (-\frac {4 i \sqrt {2} a \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{\sqrt {i a \tan (c+d x)}}+\frac {4 i a^{3/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+i \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}+\frac {i \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{\sqrt {1+i \tan (c+d x)} \sqrt {i a \tan (c+d x)}}\right )\right )}{d} \]

input
Integrate[(a + I*a*Tan[c + d*x])^(5/2)/Sqrt[Cot[c + d*x]],x]
 
output
(I*a^2*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(2*(1 + I*Tan[c + d*x])^2*Sqr 
t[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]*((3/(2*(1 + I*Tan[c + d*x])^2) 
+ (1 + I*Tan[c + d*x])^(-1))/4 + (3*Sqrt[a]*ArcSinh[Sqrt[I*a*Tan[c + d*x]] 
/Sqrt[a]])/(8*(1 + I*Tan[c + d*x])^(5/2)*Sqrt[I*a*Tan[c + d*x]])) - I*(((- 
4*I)*Sqrt[2]*a*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c 
 + d*x]]]*Sqrt[Tan[c + d*x]])/Sqrt[I*a*Tan[c + d*x]] + ((4*I)*a^(3/2)*ArcS 
inh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[Tan[c + 
d*x]])/(Sqrt[I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + I*Sqrt[Tan[c 
+ d*x]]*Sqrt[a + I*a*Tan[c + d*x]] + (I*Sqrt[a]*ArcSinh[Sqrt[I*a*Tan[c + d 
*x]]/Sqrt[a]]*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[1 + I*T 
an[c + d*x]]*Sqrt[I*a*Tan[c + d*x]]))))/d
 
3.8.67.3 Rubi [A] (verified)

Time = 1.21 (sec) , antiderivative size = 211, normalized size of antiderivative = 0.95, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {3042, 4729, 3042, 4039, 27, 3042, 4080, 27, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {\cot (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {\cot (c+d x)}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \sqrt {\tan (c+d x)} (i \tan (c+d x) a+a)^{5/2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \sqrt {\tan (c+d x)} (i \tan (c+d x) a+a)^{5/2}dx\)

\(\Big \downarrow \) 4039

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \int \frac {1}{2} \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} (9 i \tan (c+d x) a+7 a)dx-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} (9 i \tan (c+d x) a+7 a)dx-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} (9 i \tan (c+d x) a+7 a)dx-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 4080

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \left (\frac {\int -\frac {\sqrt {i \tan (c+d x) a+a} \left (9 i a^2-23 a^2 \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)}}dx}{a}+\frac {9 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \left (\frac {9 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (9 i a^2-23 a^2 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \left (\frac {9 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (9 i a^2-23 a^2 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 4084

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \left (\frac {9 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {32 i a^2 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-23 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \left (\frac {9 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {32 i a^2 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-23 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \left (\frac {9 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {64 a^4 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-23 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \left (\frac {9 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(32+32 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-23 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 4082

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \left (\frac {9 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(32+32 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {23 i a^3 \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}}{2 a}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 65

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \left (\frac {9 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(32+32 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {46 i a^3 \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}}{2 a}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} a \left (\frac {9 i a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {46 (-1)^{3/4} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(32+32 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )\)

input
Int[(a + I*a*Tan[c + d*x])^(5/2)/Sqrt[Cot[c + d*x]],x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-1/2*(a^2*Tan[c + d*x]^(3/2)*Sqrt[a 
 + I*a*Tan[c + d*x]])/d + (a*(-1/2*((46*(-1)^(3/4)*a^(5/2)*ArcTan[((-1)^(3 
/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((32 + 32 
*I)*a^(5/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[ 
c + d*x]]])/d)/a + ((9*I)*a*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) 
/d))/4)
 

3.8.67.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4039
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + 
 d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Simp[a/(d*(m + n - 1)) 
Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[b*c*(m - 2) + 
a*d*(m + 2*n) + (a*c*(m - 2) + b*d*(3*m + 2*n - 4))*Tan[e + f*x], x], x], x 
] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] 
 && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4080
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] + Simp[ 
1/(a*(m + n))   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Sim 
p[a*A*c*(m + n) - B*(b*c*m + a*d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*T 
an[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.8.67.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 353 vs. \(2 (175 ) = 350\).

Time = 1.80 (sec) , antiderivative size = 354, normalized size of antiderivative = 1.59

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (18 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+23 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-4 \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+16 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +32 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right )}{8 d \sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \left (1+i \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) \sqrt {i a}\, \sqrt {-i a}}\) \(354\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (18 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+23 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-4 \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+16 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +32 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right )}{8 d \sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \left (1+i \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) \sqrt {i a}\, \sqrt {-i a}}\) \(354\)

input
int((a+I*a*tan(d*x+c))^(5/2)/cot(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/8/d*(a*(1+I*tan(d*x+c)))^(1/2)*a*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*( 
18*I*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+23*I*l 
n(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2 
)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a-4*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)* 
(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+16*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*( 
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*tan(d*x+c)*a)/(tan(d*x+c)+I))*( 
I*a)^(1/2)*a+32*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c))) 
^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2))/(1/tan(d*x+c))^(1/2)/(1 
+I*tan(d*x+c))/tan(d*x+c)/(I*a)^(1/2)/(-I*a)^(1/2)
 
3.8.67.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 722 vs. \(2 (166) = 332\).

Time = 0.27 (sec) , antiderivative size = 722, normalized size of antiderivative = 3.25 \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {\cot (c+d x)}} \, dx=\frac {\sqrt {2} {\left (11 \, a^{2} e^{\left (5 i \, d x + 5 i \, c\right )} - 4 \, a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} - 7 \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} - \sqrt {\frac {529 i \, a^{5}}{16 \, d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (-\frac {16 \, {\left (69 \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} - 23 \, a^{3} + 8 \, \sqrt {2} \sqrt {\frac {529 i \, a^{5}}{16 \, d^{2}}} {\left (i \, d e^{\left (3 i \, d x + 3 i \, c\right )} - i \, d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{23 \, a}\right ) + \sqrt {\frac {529 i \, a^{5}}{16 \, d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (-\frac {16 \, {\left (69 \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} - 23 \, a^{3} + 8 \, \sqrt {2} \sqrt {\frac {529 i \, a^{5}}{16 \, d^{2}}} {\left (-i \, d e^{\left (3 i \, d x + 3 i \, c\right )} + i \, d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{23 \, a}\right ) - \sqrt {\frac {128 i \, a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (16 i \, a^{3} e^{\left (i \, d x + i \, c\right )} + \sqrt {2} \sqrt {\frac {128 i \, a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right ) + \sqrt {\frac {128 i \, a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (16 i \, a^{3} e^{\left (i \, d x + i \, c\right )} - \sqrt {2} \sqrt {\frac {128 i \, a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right )}{4 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)/cot(d*x+c)^(1/2),x, algorithm="fricas")
 
output
1/4*(sqrt(2)*(11*a^2*e^(5*I*d*x + 5*I*c) - 4*a^2*e^(3*I*d*x + 3*I*c) - 7*a 
^2*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 
 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)) - sqrt(529/16*I*a^5/d^2)*(d*e^(4*I 
*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log(-16/23*(69*a^3*e^(2*I*d*x 
 + 2*I*c) - 23*a^3 + 8*sqrt(2)*sqrt(529/16*I*a^5/d^2)*(I*d*e^(3*I*d*x + 3* 
I*c) - I*d*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2 
*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/a) + 
 sqrt(529/16*I*a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + 
 d)*log(-16/23*(69*a^3*e^(2*I*d*x + 2*I*c) - 23*a^3 + 8*sqrt(2)*sqrt(529/1 
6*I*a^5/d^2)*(-I*d*e^(3*I*d*x + 3*I*c) + I*d*e^(I*d*x + I*c))*sqrt(a/(e^(2 
*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c 
) - 1)))*e^(-2*I*d*x - 2*I*c)/a) - sqrt(128*I*a^5/d^2)*(d*e^(4*I*d*x + 4*I 
*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log(1/4*(16*I*a^3*e^(I*d*x + I*c) + sqr 
t(2)*sqrt(128*I*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(a/(e^(2*I*d*x + 
2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))* 
e^(-I*d*x - I*c)/a^2) + sqrt(128*I*a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e 
^(2*I*d*x + 2*I*c) + d)*log(1/4*(16*I*a^3*e^(I*d*x + I*c) - sqrt(2)*sqrt(1 
28*I*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1) 
)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-I*d*x - 
 I*c)/a^2))/(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)
 
3.8.67.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {\cot (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((a+I*a*tan(d*x+c))**(5/2)/cot(d*x+c)**(1/2),x)
 
output
Timed out
 
3.8.67.7 Maxima [F]

\[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {\cot (c+d x)}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sqrt {\cot \left (d x + c\right )}} \,d x } \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)/cot(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate((I*a*tan(d*x + c) + a)^(5/2)/sqrt(cot(d*x + c)), x)
 
3.8.67.8 Giac [F]

\[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {\cot (c+d x)}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sqrt {\cot \left (d x + c\right )}} \,d x } \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)/cot(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate((I*a*tan(d*x + c) + a)^(5/2)/sqrt(cot(d*x + c)), x)
 
3.8.67.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\sqrt {\cot (c+d x)}} \, dx=\int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}} \,d x \]

input
int((a + a*tan(c + d*x)*1i)^(5/2)/cot(c + d*x)^(1/2),x)
 
output
int((a + a*tan(c + d*x)*1i)^(5/2)/cot(c + d*x)^(1/2), x)